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Abstract. This paper describes theSets and Fields(SAF) scientific data
modeling system. It is a revolutionary approach to interoperation of high per-
formance, scientific computing applications based upon rigorous, math-ori-
ented data modeling principles. Previous technologies have required all ap-
plications to use the same data structures and/or meshes to represent scientif-
ic data or lead to an ever expanding set of incrementally different data
structures and/or meshes. SAF addresses this problem by providing a small
set of mathematical building blocks—sets, relations and fields—out of which
a wide variety of scientific data can be characterized. Applications literally
modeltheir data by assembling these building blocks. A short historical per-
spective, a conceptual model and an overview of SAF along with preliminary
results from its use in a few ASCI codes are discussed.

1 Introduction

This paper describes theSets and Fields(SAF, pronounced "safe") scientific data mod-
eling system: a revolutionary approach to storage and exchange of data between high
performance, scientific computing applications. It is being developed as part of the
Data Models and Formats(DMF) component of theAccelerated Strategic Computing
Initiative (ASCI) [15].

ASCI-DMF is chartered with developing a suite of software products for reading,
writing, exchanging and browsing scientific data and for facilitating interoperation of a
diverse and continually expanding collection of scientific computing software applica-
tions. This amounts to solving a very large scale scientific software integration problem.
Small scale integration has been addressed by a number of existing products:
SEACAS[20], PACT[4], Silo[18], Exodus II[19], CDMLib[1], netCDF[16], CDF[12],
HDF[11],[3] and PDBLib[4] to name a few. There are many others. Numerous isolated
successes with these products on the small scale lead many to believe any one is suffi-
cient for the large scale. It is merely a matter of comming to agreement. However, be-
cause these products force applications to express their data in terms of handfuls of data
structures and/or mesh types, this has never been practical. Consequently, these ap-
proaches have succeeded in integration on the small scale but hold little promise for the
large scale.



The key to integration and sharing of data on the large scale is to develop a small
set of building blocks out of which descriptions for a wide variety of scientific data can
be constructed. Each new and slightly different kind of data involves the use of the same
building blocks to form a slightly differentassembly, to literallymodel scientific data.

To achieve this, the building blocks must be at once, primitive and abstract. They
must be primitive enough to model a wide variety of scientific data. They must be ab-
stract enough to model the data in terms ofwhatit represents in a mathematical or phys-
ical sense independent ofhow it is represented in an implementation sense. For exam-
ple, while there are many ways to represent the airflow over the wing of a supersonic
aircraft in a computer program, there is only one mathematical/physical interpretation:
a field of 3D velocity vectors over a 2D surface. This latter description is immutable. It
is independent of any particular representation or implementation choices. Understand-
ing thiswhatversushowrelationship, that iswhat is represented versushowit is repre-
sented, is key to developing a solution for large scale integration of scientific software.

These are the principles upon which SAF is being developed. In the remaining sec-
tions, we present a brief history of scientific data exchange, an abstract conceptual view
of scientific data, the data modeling methodology developed for and implemented in
SAF and preliminary results from integration of SAF with some ASCI applications.

2 Historical Perspective

In the early days of scientific computing, roughly 1950 - 1980, simulation software de-
velopment at many labs invariably took the form of a number of software “stovepipes”.
Each big code effort included sub-efforts to develop supporting tools for visualization,
data differencing, browsing and management. Developers working in a particular
stovepipe designed every piece of software they wrote, simulation code and tools alike,
to conform to a common representation for the data. In a sense, all software in a partic-
ular stovepipe was really just one big, monolithic application, typically held together by
a common, binary or ASCII file format. Data exchanges across stovepipes were
achieved by employing one or more computer scientists whose sole task in life was to
write a conversion tool called alinker and keep it up to date as changes were made to
one or the other codes that it linked. In short, there was no integration. Furthermore,
there was duplication of effort in the development of similar tools for each code.

Between 1980 and 2000, an important innovation emerged, the general purpose I\O
library. In fact, two variants emerged each working at a different level of abstraction.
One focused on computer science objects such as arrays, structs and linked lists. The
other focused on computational modeling objects such as structured and unstructured
meshes and zone- and node-centered variables. Examples of the former are CDF, HDF
and PDBLib (early 80’s). Examples of the latter are EXODUS (1982), Silo (1988) and
CDMLib (1998).

Unfortunately, both kinds of I/O libraries focused more upon thehowsof scientific
data representation than thewhats. That is, they characterizehowthe data is represented
in terms of arrays, structs and linked-lists or in terms of structured and unstructured
meshes with zone- and node-centered variables. To use these products across the gamut
of scientific data, a set of conventions inhowthese objects are applied to represent var-
ious kinds of data must invariably be adopted. And, without a lot of cooperative effort,



different organizations wind up using a different set of conventions for the same kinds
of data. Worse still, for many kinds of scientific data, both qualitative and quantitative
information can be completely lost in the resultant representations.

A related innovation that emerged during this same time is also worth mentioning,
the visualization tool-kit. Examples are AVS[21], DX[14] and Khoros[13]. While these
products were developed primarily for visualization, they included functionality to ex-
change scientific data between software modules via common data representations.
From this point of view, most notable among these is DX for its implementation of a
data model based upon abstract, mathematical building blocks [14], [5].

Large scale integration of scientific computing software requires acommon ab-
stractioncapable of supporting a wide variety of scientific computing applications. An
appropriate abstraction is the continuous mathematical setting from which the majority
of scientific computing software is ultimately derived.

Fig. 1 a) typical scientific computing application design process, b) example of different codes
that result from different decisions in each phase of the design

In Fig. 1a[8], we illustrate the basic stages in the development of a scientific com-
puting application. The process begins with an abstract mathematical characterization
of the problem or class of problems to be solved. From there, a thorough numerical
analysis is performed resulting in a discrete approximation to the original continuous
problem or problem class. Invariably, this results in particular kinds of meshes and in-
terpolation schemes for dependent variables defined over them. Next, the software de-
sign and coding stage is entered resulting in a set of data structures and software com-
ponents implementing the numerical model. At each stage, there are numerous design
and implementation decisions to be made, each resulting in a different implementation
of a solution for the same problem or problem class. This is illustrated in Fig. 1b.

Of course, the most important point of Fig. 1b is that the only salient feature of the
data that is truly acommon abstractionis the abstract mathematical setting from which
all the different implementations are derived. This is the only context which is immuta-
ble across all design and implementation decisions. Unfortunately, historically all of the
rich mathematical information necessary to support this abstraction is routinely lost, left
in design documents, programmer’s notebooks or the heads of the computational engi-
neers. This is so because there has never existed an I/O library that allowed software
developers to model their data in these fundamental, abstract, mathematical terms.
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3 The Abstract Mathematical Setting: Fields

SAF is designed to provide the abstract mathematical setting alluded to in the previous
section. It is based upon representingfields[8]. Fields serve as the standards for real (or
imagined) observables in the real, continuous world. In terms of scientific computing,
fields are the dependent variables of a simulation. In fact, a field is really just a gener-
alization of afunction. Like functions, fields are specified in three logically distinct
parts: something akin to the domain of a function called thebase-space, something akin
to the range of a function called thefiber-spaceand amapthat relates points in the base-
space to points in the fiber-space. Furthermore, both the base-space and fiber-space are
infinite point-sets with topological dimensions called thebase-dimensionandfiber-di-
mension. This terminology comes from the mathematics offiber-bundles[5].

Next, if a field is intended to represent a real (or imagined) observable in the real,
continuous world, then it has infinitely precise value at an infinite number of points.
How do we represent it on a computer? More importantly, how do we formulate a rep-
resentation that is common across many scientific computing applications? One com-
mon representation is given in Eq.1[9]

(1)

where we represent a continuous field, , by abasis-set, and adof-set,
. We call the sdegrees of freedomor dofs[8]. To call themvalueswould imply

that they are in factequalto the field for certain points,x, and this is only true when the
basis functions areinterpolating. They are most appropriately viewed as the degrees of
freedom in the representation of the field.

Fig. 2 An arbitrary one dimensional field and possible representations.
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Three examples are illustrated in Fig. 2. In this figure, the horizontal axes represent
the base-space. The vertical axes represent the fiber-space and the wiggly lines we’ve
plotted represent the map between the two. While there is much to be learned by com-
paring these examples in detail, we will only touch on a few key points.

First, Fig. 2c introduces a level of indirection by re-parameterizing on a new base-
space,u. In some sense,u represents the infinite point-setalong the wiggly line itself,
as opposed to either axis. Onu, even the independent variable,x, is a field. It is a special
field because it is acoordinate field. Nonetheless, this illustrates the point that even the
independent variable(s) of a simulation are fields like any other field. This also means
that apart from the fieldsF andx, u is nothing more than a topological space. And, state-
ments aboutu and its various subsets are concerned solely with set-algebraic relation-
ships of infinite point-sets. Next, observing thatu is broken into subsets each of which
is independently mapped onto an elemental base-space,u', leads to another key point in
modeling a field, thesubset inclusion lattice or SIL[8].

Fig. 3 The SILs in the upper half of the figure are for each of the example fields in Fig. 2. The
SIL in the lower half is drawn to highlight relationships for element 2 of the 2D mesh at right.

The SIL is a directed graph, indicating how various subsets of the base-space are
related. Examples of SILs are illustrated in Fig. 3 where an ellipse represents an infinite
point-set and an arrow represents the fact that the point-set at its tail is a subset of the
point-set at its head. Fig. 3c illustrates the SIL for the field of Fig. 2c. The whole one
dimensional base-space is decomposed into ten one dimensional pieces. Each of these
pieces is, in turn, bounded by two zero dimensional pieces. These pieces are often re-
ferred to, respectively, as thezonesandnodes. However, a better terminology isN di-
mensional elementwhereN is the base-dimension of an elemental piece. For commonly
used elements such as points, edges, faces and volumes,N is 0, 1, 2 or 3, respectively.
The lower half of Fig. 3 represents the SIL for a simple, 2 dimensional mesh composed
of quad, triangle and a couple of edge elements as well as its decomposition into differ-
ent processor pieces.
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Across all possible representations for a field, there are subtle trade-offs between
how a representation is split between the dof-set, basis-set and SIL. There is probably
someconservation of informationprinciple at work. To see this, observe that the basis-
set in Fig. 2a is rather complicated, involving rational polynomials and trigonometric
functions while the dof-set is small. The basis-set in Fig. 2b involves only a single func-
tion, h(x), shifted about integral positions on thex base-space. The dof-set is larger.
And, in both of these cases, the SIL contains only a single set. Further comparison of
Fig. 2b with Fig. 2c. reveals that while both are piecewise linear representations, in Fig.
2c, we have an additional set of numbers, . These can be viewed either as an en-
tirely new dof-set for the independent variable,x, as a field defined on theu base-space
or as parameters that control the shape of the member functions of a basis-set for the
field F defined on thex base-space. Ultimately, the difference is determined by how the
basis-set is defined. If it is defined on thex base-space with member functions such as
b1(x), b2(x) andb3(x) in Fig. 2c, then the SIL contains just one set for the whole base-
space. If, on the other hand, theu base-space is decomposed into elemental subsets,u',
then the basis-set contains just two functions,u' and1-u', and the SIL is more involved
because it must specify how these pieces fit together. This latter view is illustrated in
Fig. 3c. Finally, the field in Fig. 2b could be characterized as a special case of that of
Fig. 2c whenu=x and . Again, the difference is in the basis-set.

3.1 The Data Model Enables Development of Set and Field Operators

There is much more to modeling fields than there is room to discuss here. Furthermore,
the ability to model fields is only the first, small step. Of much greater importance is the
plethora of operations on sets and fields such a data model enables. Therefore, we con-
clude this section by postulating a number of these operations[8].

With such a model, we have all the information necessary to evaluate a field at any
point in its base-space. We can efficiently describe fields that are defined on only a sub-
set of a mesh instead of having to define them with a bunch of zeros over the whole
mesh. We can easily postulate arestrictionoperator which restricts a field to a particu-
lar subset of its base-space. Such an operation is invaluable when we are interested in
looking at only a portion of some large data set. Likewise, we can postulate a number
of set operations such asunion, intersection, difference, boundary-of, copy-of,and
neighbor-of.

Looking, again, at the SILs in Fig. 3, we see that different types of mesh structure
can be captured in terms of different patterns of subset relations (arrows) between the
N dimensional elements. Only the pattern need be captured. With this approach, various
kinds of structured grids such as rectangular, triangle-strips, hexagonal, could be easily
and efficiently represented. In a completely arbitrarily connected grid, there is no such
pattern and the subset relations (arrows) must be explicitly characterized.

We can representinhomogeneousfields. For example, we can represent a symmet-
ric tensor field which is a 2D tensor over an infinitely thin, 2D wing but is a 3D tensor
over a 3D fuselage. Furthermore, we can characterize multiple, independent decompo-
sitions of a base-space into element-blocks, materials, processor domains, parts in an
assembly, etc. In the case of processor decompositions, the SIL provides the informa-
tion to enable operators that seamlessly change between different decompositions to run

xi
C{ }

xi
B{ } i{ }=



a problem on 32 processors, for example, and restart it on 48. Finally, we can describe
multiple, different representations for the same field and seamlessly exchange between
them. Operations such as these are fundamental to large scale, scientific software inte-
gration.

4 The Sets and Fields (SAF) Scientific Data Modeling System

SAF represents a first cut at a portable, parallel, high performance application program-
ming interface for reading and writing shareable scientific data files based upon abstract
data modeling principles. Our primary goal has been to demonstrate that we can apply
this technology to do the same job previously achieved with mesh-object I/O libraries
like Silo and EXODUS, that is to simply describe and store our data to files. Our belief
is that if we cannot demonstrate this basic capability, there is little point in trying to ad-
dress more advanced features of scientific data management made possible with this
technology.

Fig. 4 Overall SAF System Software Architecture

A coarse view of the architecture is illustrated in Fig. 4. SAF is built upon the Hi-
erarchical Data Format, version 5 (HDF5) and the Message Passing Interface (MPI). It
is a procedural implementation of a design based upon object oriented techniques.
Based on the conceptual model,set, relation andfield objects were defined along with
the following operators:

• declare : create a handle to a new object and define its parameters.

• describe : get the declaration parameters of an object.

• write : put out “raw” data (typically problem-sized) that populates an object

• read : get “raw” data of an object.

• find : retrieve objects based on matching criteria and/or traversing the SIL.

4.1 Sets and Collections

Sets are used to define the base-space for fields. In theory, every subset of the base-
space, even every node, edge, face and volume element is a full-fledged set. However,
in the implementation of SAF, we have had to differentiate between two kinds of sets:
aggregateandprimitive. Aggregate sets are the union of other sets in the base-space.
As such, aggregate sets are used to establishcollectionsof primitive sets as well as other
aggregate sets. Primitive sets are not the union of any other sets in the base-space. Typ-
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ically, primitive sets represent computational elements: nodes, edges, faces and vol-
umes. Primitive sets are never instantiated as first class sets in SAF. Instead, they only
ever appear as members of collections.

4.2 Relations

A relation describes how members of adomaincollection are set-algebraically related
to members of arangecollection. There are numerous possibilities for different kinds
of relations, but currently only two have been implemented:subset relationsandtopol-
ogy relations. A subset relation defines a subset relationship between two aggregate sets
by identifying the members in a range collection, on the superset, that are in the domain
collection on the subset. For example, a processor subset is specified by a subset rela-
tion which identifies all the elements in the whole that are on the processor. A topology
relation defines how members of a domain collection are knitted together to form a net-
work or mesh by virtue of the fact that they share members of a range collection. For
example a collection of zones is knitted together by identifying the nodes each zone
shares.

Fig. 5 An example of sets, collections, subset and topology relations.

4.3 Field-Templates and Fields

Fields are defined in SAF in two steps. First, a field-template is defined by attaching a
fiber-space to a set. A fiber-space is specified by its fiber-dimension (e.g. the number
of components in the field), an algebraic-type such as scalar, vector or tensor, a basis-
type such as Euclidean and a physical quantity such as length, time or charge. In fiber-
bundle theory, the Cartesian product of the fiber-space and the base-space it is attached
to defines thebundle[5]. A bundle serves to identify a class of fields. Thus, a field-tem-
plate defines a bundle.

In the second step, a field is defined as an instance of a field-template. The basis-
set is defined along with the specific units of measure such as meters, seconds or cou-
lombs. Finally, the dof-set is defined by specifying a mapping of dofs to pieces of the
base-space. Currently, SAF supports mappings of dof-sets which aren:1 associated
with members of collections. That is, for every member there aren dofs that influence
the field over it. These mappings are a generalization of the older notions of node- and
zone-centered variables commonly used in I/O libraries and visualization tools.
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5 Results

A key result and milestone for SAF is that
sub-organizations in ASCI who currently
use EXODUS or Silo, have demonstrated
that SAF is general enough to replace
both of these older scientific database
technologies. This is a critical result. It
validates our approach to large scale inte-
gration. In addition, SAF is currently be-
ing integrated with several ASCI applica-
tions and support tools including SNL’s
SIERRA[10] and LLNL’s Ale3d[22] and
MeshTV[17]. The results in Fig. 6 com-
pare SAF’s I/O performance with Silo in the Ale3d simulation code. They are highly
preliminary but encouraging. SAF’s performance suggests scalability and appears to
compare favorably with Silo.

6 Further Work

Our primary focus so far has been to develop a sufficiently general data model and then
to prove that we can produce an easy to use, scalable, parallel I/O library of acceptable
performance that describes scientific data in these terms. From here, there are many di-
rections to take. Some are enumerated below.

• The ability for SAF clients to define new element types and basis-sets at run time.

• The ability to register specific assemblies of SAF objects in an object registry.

• The ability to characterize derived fields along with the specific derivation rules.

• A publish/subscribe paradigm for exchanging data in-situ instead of by I/O to a file.

• MPI-like messaging pitched in terms of sets and fields instead of arrays and structs.

• The addition of set and field operators.

• A query language analagous to SQL used in relational database systems.

SAF is currently being prepared for a full public release around the end of March, 2001.
At that time, there will be publicly viewable web pages at or near http://www.ca.san-
dia.gov/asci-sdm/ (follow the “Data Models and Formats” link)
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